324 research outputs found

    Decision-making methods in engineering design: a designer-oriented approach

    Get PDF
    The use of decisional methods for the solution of engineering design problems has to be tackled on a "human" viewpoint. Hence, fundamental is the identification of design issues and needs that become a designer oriented viewpoint. Decision-based methods are systematically classified in MCDM methods, Structured Design methods and Problem Structuring methods. The results are organised in order to provide a first reference for the designer in a preliminary selection of decision-based methods. The paper shows the heterogeneous use of decision-based methods, traditionally expected to solve only some specific design problems, which have been used also in different design contexts. Moreover, several design issues, which emerged from the review process, have been pointed out and discussed accordingly. This review provided useful results for the enlargement of the state of the art on Decision Based Design methods in engineering design contexts

    Computer-Aided Tolerancing Analysis of a High-Performance Car Engine Assembly

    Get PDF
    This paper proposes the analysis of the tolerances (values, types, datum) and their effects on a mechanical assembly, as a high-performance car engine, by means of a Computer-Aided Tolerancing software. The 3D tolerance stack-ups are investigated to assess the fulfillment of the functional requirements as well as the performance specifications of the assembly. Moreover, after identifying the tolerances that mainly affect the product variability, we finally propose some corrective actions on the tolerances and assess their functional allocation, tightening or relaxing their values, ensuring assemblability and cost reduction

    A Review of Automotive Spare-Part Reconstruction Based on Additive Manufacturing

    Get PDF
    In the Industry 4.0 scenario, additive manufacturing (AM) technologies play a fundamental role in the automotive field, even in more traditional sectors such as the restoration of vintage cars. Car manufacturers and restorers benefit from a digital production workflow to reproduce spare parts that are no longer available on the market, starting with original components, even if they are damaged. This review focuses on this market niche that, due to its growing importance in terms of applications and related industries, can be a significant demonstrator of future trends in the automotive supply chain. Through selected case studies and industrial applications, this study analyses the implications of AM from multiple perspectives. Firstly, various types of AM processes are used, although some are predominant due to their cost-effectiveness and, therefore, their better accessibility and wide diffusion. In some applications, AM is used as an intermediate process to develop production equipment (so-called rapid tooling), with further implications in the digitalisation of conventional primary technologies and the entire production process. Secondly, the additive process allows for on-demand, one-off, or small-batch production. Finally, the ever-growing variety of spare parts introduces new problems and challenges, generating constant opportunities to improve the finish and performance of parts, as well as the types of processes and materials, sometimes directly involving AM solution providers

    A Keyword, Taxonomy and Cartographic Research Review of Sustainability Concepts for Production Scheduling in Manufacturing Systems

    Get PDF
    The concept of sustainability is defined as composed of three pillars: social, environmental, and economic. Social sustainability implies a commitment to equity in terms of several “interrelated and mutually supportive” principles of a “sustainable society”; this concept includes attitude change, the Earth’s vitality and diversity conservation, and a global alliance to achieve sustainability. The social and environmental aspects of sustainability are related in the way sustainability indicators are related to “quality of life” and “ecological sustainability”. The increasing interest in green and sustainable products and production has influenced research interests regarding sustainable scheduling problems in manufacturing systems. This study is aimed both at reducing pollutant emissions and increasing production efficiency: this topic is known as Green Scheduling. Existing literature research reviews on Green Scheduling Problems have pointed out both theoretical and practical aspects of this topic. The proposed work is a critical review of the scientific literature with a three-pronged approach based on keywords, taxonomy analysis, and research mapping. Specific research questions have been proposed to highlight the benefits and related objectives of this review: to discover the most widely used methodologies for solving SPGs in manufacturing and identify interesting development models, as well as the least studied domains and algorithms. The literature was analysed in order to define a map of the main research fields on SPG, highlight mainstream SPG research, propose an efficient view of emerging research areas, propose a taxonomy of SPG by collecting multiple keywords into semantic clusters, and analyse the literature according to a semantic knowledge approach. At the same time, GSP researchers are provided with an efficient view of emerging research areas, allowing them to avoid missing key research areas and focus on emerging ones

    A design methodology for an innovative racing mini motorcycle frame

    Get PDF
    Sports equipment design is a young and evolving engineering discipline focused on the best simultaneous optimization of user and product as a system. In motorsports, in particular, the final performance during a race depends on many parameters related to the vehicle, circuit, weather, and tyres and the personal feelings of every single driver. Top teams in high-tech categories can invest huge amounts of money in developing simulators, but such economic commitment is not sustainable for all those teams that operate in minor but very popular categories, such as karts or mini-motorcycles. In these fields, the most common design approach is trial and error on physical prototypes. Such an approach leads to high costs, long optimization times, poor innovation, and inefficient management of the design knowledge. The present paper proposes a driver centred methodology for the design of an innovative mini racing motorcycle frame. It consists of two main phases: the drivers’ feelings translation into engineering requirements and constraints, and the exploration of the design solution space. Expected effects of the application of the proposed methodology are an overall increase in the degree of innovation, time compression, and cost reduction during the development process, with a significant impact on the competitiveness of small racing teams in minor categories

    Human-robot coexistence and interaction in open industrial cells

    Get PDF
    Recent research results on human\u2013robot interaction and collaborative robotics are leaving behind the traditional paradigm of robots living in a separated space inside safety cages, allowing humans and robot to work together for completing an increasing number of complex industrial tasks. In this context, safety of the human operator is a main concern. In this paper, we present a framework for ensuring human safety in a robotic cell that allows human\u2013robot coexistence and dependable interaction. The framework is based on a layered control architecture that exploits an effective algorithm for online monitoring of relative human\u2013robot distance using depth sensors. This method allows to modify in real time the robot behavior depending on the user position, without limiting the operative robot workspace in a too conservative way. In order to guarantee redundancy and diversity at the safety level, additional certified laser scanners monitor human\u2013robot proximity in the cell and safe communication protocols and logical units are used for the smooth integration with an industrial software for safe low-level robot control. The implemented concept includes a smart human-machine interface to support in-process collaborative activities and for a contactless interaction with gesture recognition of operator commands. Coexistence and interaction are illustrated and tested in an industrial cell, in which a robot moves a tool that measures the quality of a polished metallic part while the operator performs a close evaluation of the same workpiece

    A method for yield and cycle time improvements in Al alloy casting with enhanced conductivity steel for die construction

    Get PDF
    A die for Al alloy casting must be designed to achieve the expected quality levels. Moreover, the casting unit cost must be regarded as the objective function to be minimised It can be expressed as a function of the quantity of materials and energy to be used, cycle time and equipment investment. This work compares the performance of the die with inserts manufactured using the usual 1.2343 steel with that of the innovative 1.2383. The latter is considered due to its enhanced thermal conductivity, despite being more expensive. Simulation experiments are designed to evaluate different die layouts. The quality design solutions are evaluated against the cost objective function in order to identify the optimal die choice. A case study on gravity die casting (GDC) of an AlSi7Mg0.3 engine head shows faster solidification dynamics when using 1.2383 instead of 1.2343 steel. This reduces the feeder volume, thus increasing the production yield and speeding up the cycle time with a leverage effect. The higher investment cost for the inserts is rapidly returned thanks to the reduction in variable costs. The Return On Investment (ROI) with the improved die in the new solution is short compared with the life of the die

    DESARROLLO,TOPOGRAFIA Y SIGNIFICACION FUNTIONAL DE LOS CAPILARES EN LOS CORPUSCULOS DE PACINI

    Get PDF

    Periprosthetic DXA after total hip arthroplasty with short vs. ultra-short custom-made femoral stems

    Get PDF
    Background and purpose Dual-energy X-ray absorptiometry (DXA) analysis of the 7 periprosthetic Gruen zones is the most commonly used protocol to evaluate bone remodeling after the implantation of conventional femoral stems. We assessed the value of DXA after cementless primary total hip arthroplasty (THA) by comparing the effect of progressive shortening of the stem of two femoral implants on periprosthetic bone remodeling using a specifically developed protocol of analysis with 5 periprosthetic regions of interest (ROIs)
    • …
    corecore